Online path planning (OPP) for unmanned aerial vehicles (UAVs) is a basic issue of intelligent flight and is indeed a dynamic multi-objective optimization problem (DMOP). In this paper, an OPP framework is proposed in the sense of model predictive control (MPC) to continuously update the environmental information for the planner. For solving the DMOP involved in the MPC we propose a dynamic multi-objective evolutionary algorithm based on linkage and prediction (LP-DMOEA). Within this algorithm, the historical Pareto sets are collected and analysed to enhance the performance. For intelligently selecting the best path from the output of the OPP, the Bayesian network and fuzzy logic are used to quantify the bias to each optimization objective. The DMOEA is validated on three benchmark problems characterized by different changing types in decision and objective spaces. Moreover, the simulation results show that the LP-DMOEA overcomes the restart method for OPP. The decision-making method for solution selection can assess the situation in an adversarial environment and accordingly adapt the path planner.
Loading....